Melting of subducted basalt at the core-mantle boundary.

نویسندگان

  • Denis Andrault
  • Giacomo Pesce
  • Mohamed Ali Bouhifd
  • Nathalie Bolfan-Casanova
  • Jean-Marc Hénot
  • Mohamed Mezouar
چکیده

The geological materials in Earth's lowermost mantle control the characteristics and interpretation of seismic ultra-low velocity zones at the base of the core-mantle boundary. Partial melting of the bulk lower mantle is often advocated as the cause, but this does not explain the nonubiquitous character of these regional seismic features. We explored the melting properties of mid-oceanic ridge basalt (MORB), which can reach the lowermost mantle after subduction of oceanic crust. At a pressure representative of the core-mantle boundary (135 gigapascals), the onset of melting occurs at ~3800 kelvin, which is ~350 kelvin below the mantle solidus. The SiO2-rich liquid generated either remains trapped in the MORB material or solidifies after reacting with the surrounding MgO-rich mantle, remixing subducted MORB with the lowermost mantle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arc Basalt Simulator version 2, a simulation for slab dehydration and fluidfluxed mantle melting for arc basalts: Modeling scheme and application

[1] Convergent margin magmas typically have geochemical signatures that include elevated concentrations of large-ion lithophile elements; depleted heavy rare earth elements and high field strength elements; and variously radiogenic Sr, Pb, and Nd isotopic compositions. These have been attributed to the melting of depleted mantle peridotite by the fluxing of fluids or melts derived from subducti...

متن کامل

Carbonate-rich melts in the oceanic low-velocity zone and deep mantle

Deep extensions of low seismic velocities in the mantle beneath volcanic centers are commonly attributed to high temperatures and have been used as a possible characteristic of hot plumes originating at the core-mantle boundary. To address this issue, we examine the effect of volatiles on melting to determine if regions of low seismic velocities may also be interpreted as regions of melting wit...

متن کامل

Transport of water into the lower mantle: Role of stishovite

[1] When subjected to lower-mantle pressures and temperatures, natural ‘‘anhydrous’’ basalt containing 0.2 wt.% H2O forms a phase assemblage in which SiO2 stishovite is a significant carrier of hydrogen (up to 500 ppm H2O by weight, as hydroxide), whereas the coexisting (Mg, Fe, Al, Ca)SiO3 perovskite appears to be not (upper bound of 50 ppm (wt) H2O). Contrary to the devolatilization character...

متن کامل

Constraints on source-forming processes of West Greenland kimberlites inferred from Hf-Nd isotope systematics

Kimberlites from West Greenland have Hf–Nd isotope as well as major and trace element compositions that are similar to other Group I kimberlites, but that are distinctive in the spectrum of magmas sampled at Earth’s surface. The West Greenland kimberlites have eNdi that ranges from +1.6 to +3.1 and eHfi that ranges from 4.3 to +4.9. The samples exhibit ubiquitous negative DeHfi (deviation from ...

متن کامل

Melting temperatures of MgO under high pressure by micro-texture analysis

Periclase (MgO) is the second most abundant mineral after bridgmanite in the Earth's lower mantle, and its melting behaviour under pressure is important to constrain rheological properties and melting behaviours of the lower mantle materials. Significant discrepancies exist between the melting temperatures of MgO determined by laser-heated diamond anvil cell (LHDAC) and those based on dynamic c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 344 6186  شماره 

صفحات  -

تاریخ انتشار 2014